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The elsewhere surmized topological origin of phase transitions is given here important evidence through the
analytic study of an exactly solvable model for which both topology of submanifolds of configuration space
and thermodynamics are worked out. The model is a mean-field one with ak-body interaction. It undergoes a
second-order phase transition fork=2 and a first-order one fork.2. This opens a perspective for the under-
standing of the deep origin of first and second-order phase transitions, respectively. In particular, a remarkable
theoretical result consists of a mathematical characterization of first-order transitions. Moreover, we show that
a “reduced” configuration space can be defined in terms of collective variables, such that the correspondence
between phase transitions and topology changes becomes one-to-one, for this model. Finally, an unusual
relationship is worked out between the microscopic description of a classicalN-body system and its macro-
scopic thermodynamic behavior. This consists of a functional dependence of thermodynamic entropy upon the
Morse indexes of the critical pointsssaddlesd of the constant energy hypersurfaces of the microscopic
2N-dimensional phase space. Thus phase spacesand configuration spaced topology is directly related to
thermodynamics.
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I. INTRODUCTION

Thermodynamical phase transitions are certainly one of
the main topics of statistical physics. A huge amount of
work, both theoretical and experimental, has been done dur-
ing the past decades leading to remarkable successes as is
witnessed, for example, by the renormalization group theory
of critical phenomena. However, there are still long-standing
open problems about phase transitions; among them we can
mention amorphous and disordered systemsslike glasses and
spin glassesd undergoing “dynamical” transitions, or first-
order phase transitions, which are still lacking a satisfactory
theoretical understanding of their origin. Moreover, on the
forefront of modern research in statistical physics, standard

theoretical definitions and methods are challenged by the ex-
perimentally observed phase transitions occurring in small
classical and quantum systemssnanoscopic and mesoscopicd
like atomic and molecular clusters, polymers and proteins,
Bose-Einstein condensates, droplets of quantum liquids, etc.
Finally, in the mathematically rigorous background of phase
transitions theory, neither in the Yang-Lee theory for the
grand canonical ensemblef1g nor in the Ruelle, Sinai,
Pirogov theory for the canonical ensemblef2g, an a priori
mathematical distinction can be made among the potentials
leading to first or second-order phase transitions, respec-
tively.

The present paper aims to contribute to the advancement
of a recently proposed theoretical framework where the sin-
gular behaviors of thermodynamic observables at a phase
transition are attributed to major topology changes in phase
space and—equivalently—in configuration spacef3–7g.
More precisely, in Refs.f3–7g, it has been proposed that
thermodynamic phase transitions could be a consequence of
suitable topology changes of certain submanifolds of the
configuration space defined by the potential energy function.
The presence of such topological changes has been recently
shown to be anecessarycondition, under fairly general as-
sumptions, for the presence of a phase transitionf8g; how-
ever, the converse isnot true, and no rigorous results are
available yet on the sufficient conditions. The analytical or
numerical study of particular models thus remains crucial to
get hints towards more general resultsssee also Refs.f9,10g
for recent results on one-dimensional systems, and Ref.f11g
as to the fully connected spherical modeld.

In this perspective, we stress that the topological approach
has been hitherto applied only to systems undergoing

*Electronic address: luca.angelani@phys.uniroma1.it
†Also at: Centro Interdipartimentale per lo Studio delle Dinamiche

ComplessesCSDCd, Università di Firenze, Istituto Nazionale per la
Fisica della MateriasINFMd, Unità di Ricerca di Firenze, and Isti-
tuto Nazionale di Fisica NuclearesINFNd, Sezione di Firenze, via
G. Sansone 1, I-50019 Sesto FiorentinosFId, Italy, electronic ad-
dress: casetti@fi.infn.it

‡Also at: Centro Interdipartimentale per lo Studio delle Dinamiche
ComplessesCSDCd, Università di Firenze, Istituto Nazionale per la
Fisica della MateriasINFMd, Unità di Ricerca di Firenze, and Isti-
tuto Nazionale di Fisica NuclearesINFNd, Sezione di Firenze, via
G. Sansone 1, I-50019 Sesto FiorentinosFId, Italy, electronic ad-
dress: pettini@arcetri.astro.it

§Electronic address: giancarlo.ruocco@roma1.infn.it
iElectronic address: francesco.zamponi@phys.uniroma1.it

PHYSICAL REVIEW E 71, 036152s2005d

1539-3755/2005/71s3d/036152s12d/$23.00 ©2005 The American Physical Society036152-1



second-order phase transitions. Therefore tackling first-order
phase transitions in the topological framework is of great
interest, because some insight into the challenging problem
of their origin can be obtained, and because this reinforces
the working hypothesis that the topological approach could
unify the treatment of the different kinds of phase transitions
in view of encompassing also more “exotic” ones, like glassy
transitions and the others mentioned earlier.

In this paper we first study a model which, according to
the value of a parameter, has no transition or undergoes a
first or a second-order transition. Remarkably, for this model
an exact analytical computation is possible of the Euler
characteristic—that is a topological invariant—of those sub-
manifolds of the configuration space whose topological
changes are expected to be related to the phase transition. We
find f12g that the phase transition is actually signaled by a
discontinuity in the Euler characteristicxsed and that the sign
of the second derivative ofxsed indicates the order of the
transition. Then, we study the topology of submanifolds of a
“reduced” configuration space, i.e., the space of some collec-
tive variables: in this case we find a one-to-one correspon-
dence between phase transitions and topology changes.

Finally, we derive a general result showing that an ana-
lytic estimateof another topological invariant of the same
submanifolds can be worked out which allows to directly
link topology and thermodynamic entropy.

II. A KEY STUDY

In this section we present a study of the thermodynamical
properties of the mean-fieldk-trigonometric modelskTMd, as
well as of the topological properties of its configuration
space. A preliminary study of this model along these lines
has already been reported in Ref.f12g; there only the micro-
canonical thermodynamics was considered, while here we
are going to discuss also the canonical thermodynamical
properties. Being a model with long-range interactions which
may undergo also first-order phase transitions, we expect ca-
nonical and microcanonical thermodynamic functions to be
different, at least close to first-order transitionsf13g.

The kTM is defined by the Hamiltonian

Hk = o
i=1

N
1

2
pi

2 + Vksw1, . . . ,wNd, s1d

where hwij are angular variables:wi P f0,2pd, hpij are the
conjugated momenta, and the potential energyV is given by

Vk =
D

Nk−1 o
i1,. . .,ik

f1 − cosswi1
+ ¯ + wik

dg, s2d

whereD is the coupling constant. In what follows only the
potential energy part will be considered. This interaction en-
ergy is apparently of a mean-field nature, in that each degree
of freedom interacts with all the others; moreover, the inter-
actions arek-body ones.

The kTM is a generalization of the trigonometric model
sTMd introduced by Madan and Keyesf14g as a simple
model for the potential energy surfacesPESd—the hypersur-

face defined by the potential energy as a function of theN
degrees of freedom—of simple liquids. The TM is a model
for N independent degrees of freedom with potential energy
s2d with k=1: Vk=1.

It shares with Lennard-Jones-like systemsf15g the exis-
tence of a regular organization of the critical points of the
potential energy above a given minimumsthe elevation in
energy of the critical points is proportional to their indexd
and a regular distribution of the minima in the configuration
spacesnearest-neighbor minima lie at a well defined Euclid-
ean distanced. The PES of thekTM maintains the main fea-
tures of the TMf16g, introducing, however, a more realistic
feature, namely the interaction among the degrees of free-
dom sin the form of ak-body interactiond.

Using the relation

cosswi1
+ ¯ + wik

d = Reseiwi1 ¯ eiwikd, s3d

the configurational part of the Hamiltonian can be written as

Vk = NDf1 − Resc + isdkg = NDF1 − o
n=0

fk/2g S k

2n
D

3s− 1dnck−2ns2nG , s4d

wherec ands are collective variables, functions ofhwij:

c =
1

No
i

coswi ,

s=
1

No
i

sin wi . s5d

We observe also that the model has a symmetry group
obtained by the transformations

wi → wi + ,
2p

k
,

wi → − wi . s6d

If we think of wi as the angle between a unitary vector in a
plane and the horizontal axis of this plane, we find that the
first transformations are rotations in this plane of an angle
,s2p /kd and the second is the reflection with respect to the
horizontal axis. This group is also calledCkv.

Let us now derive the thermodynamical properties of the
kTM.

A. Canonical thermodynamics

The partition function is

Zk =E dhwje−bHk =E dhwje−bNDf1−Resc + isdkg, s7d

introducingd functions for the variablesc ands:
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Zk =E dhwj E dx dydsx − cddsy − sde−bNDf1−Resx + iydkg,

s8d

and using the integral representation of thed function, we
obtain forZk:

Zk =E dhwj E dx dyE N2 dl

2p

dm

2p

3eiNlsx−cdeiNmsy−sde−bDNf1−Resx + iydkg

=E dxdye−bDNf1−Re sx + iydkg

3E N2 dl

2p

dm

2p
eiNslx+myd

3E dhwje−iNslc+msd. s9d

The last integral is easily computable using Eq.s5d:

E dhwje−iNslc+msd = FE
0

2p

dwe−isl cos w+m sin wdGN

, s10d

and can be written in term of the Bessel functionJ0:

E
0

2p

dwe−iL cossw−cd = 2pJ0sLd, s11d

wherel=L cosc, m=L sin c, andL=Îl2+m2. The parti-
tion function can then be written as

Zk = N2s2pdN−2E dxdydldm

3e−Nf−ilx−imy+bD−bDResx + iydk−logsJ0sLdg, s12d

and since theJ0 function is always positive, there are no
problems in defining its logarithm.

We want now to perform a saddle-point evaluation of the
integral, so we have to look for the minima of the exponent
in the complexl ,m ,x,y plane. We note that if that points do
not lie on the imaginary axis of thel ,m planes, the free
energy of the model would be imaginary. So we can safely
rotate the integration path on the imaginary axis in thel ,m
planes, which corresponds to the substitutions:il→l and
im→m, then iL→L and J0sLd→ I0sLd, where I0 is the
modified Bessel function

I0sLd =
1

2p
E

0

2p

dweL cos w. s13d

In conclusion we obtain

Zk = N2s2pdN−2E dxdydldme−Ngksx,y,l,m;bd, s14d

wheregk is the real function

gksx,y,l,m;bd = bD − lx − my − bD Resx + iydk

− logfI0sLdg. s15d

In order to find the stationary points, we first determine the
subspace defined by the equations

]gk

]x
= 0, s16d

]gk

]y
= 0, s17d

obtaining the relations

l = − bDk Resx + iydk−1, s18d

m = bDk Imsx + iydk−1, s19d

thus we get

L = bDkusx + iydk−1u. s20d

Now, using Eqs.s18d and s19d, we can substitutel and m
with x andy in Eq. s15d, obtaining, in term of the complex
numberz=x+ iy:

gksz;bd = bD + bDsk − 1dRe zk − log I0sbDpukp−1ud,

s21d

and using the polar representationz=reic:

gksr,c;bd = bD + bDsk − 1drk cosskcd − log I0sbDkrk−1d.

s22d

The derivative with respect toc leads to

− bDsk − 1dkrk sinskcd = 0, s23d

so that there are 2k solutions

cn =
np

k
sn = 1, . . . ,2kd. s24d

Observing that cosskcnd=s−1dn we obtain

gksr,n;bd = bD + s− 1dnbDsk − 1drk − log I0sbDkrk−1d
s25d

and we can restrict ourselves ton=0,1. Finally, the deriva-
tive with respect tor leads to the stationary points equation

s− 1dnr =
I1sbDkrk−1d
I0sbDkrk−1d

, s26d

where the modified Bessel functionI1 is defined by

I1sLd =
1

2p
E

0

2p

dw cosweL cos w = I08sLd. s27d

For n=1 we have only the trivial solutionr=0, because
the I functions are always positive. By using an expansion
for smallr one can show that this solution is a maximum for
g. So we can study only the casen=0. We note that if there
is a nontrivial solutionsi.e., r̃sbdÞ0d of Eq. s26d, calling
g̃ksbd the value ofgkfb , r̃sbdg, we have
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Zk , N2s2pdN−2e−Ng̃ksbd, s28d

and the free energy and internal energy are, respectively,

fksbd = b−1g̃ksbd − b−1 logs2pd, s29d

eksbd = Ds1 − r̃kd. s30d

Let us now analyze the casek=1. In this case the solu-
tions r=0 are not present, so that we have only the solution

r̃ =
I1sbDd
I0sbDd

. s31d

There is no phase transition, and using Eq.s30d we have

e1sbd = DF1 −
I1sbDd
I0sbDdG . s32d

This is the free energy of trigonometric model that has been
mentioned before.

For k=2 the solutionr=0 is stable for high temperatures,
but a nontrivial solution of Eq.s26d appears atbD=1. The
transition temperature is given by the condition

Ud2g2sr;bcd
dr2 U

r=0
= 2bcDs1 − bcDd = 0, s33d

so that we obtainbcD=1; the transition is continuous, and
the order parameter isr̃. It is easy to show thatx̃=kcl and
ỹ=ksl fe.g., by adding an external field of the form −Nshc
+ksd to the Hamiltonian and performing the limith,k→0g;
then the vectorsx̃, ỹd is the mean magnetization of the spins
represented by thewi. As r̃ is the modulus of the magnetiza-
tion, for bD.1, whenr̃Þ0, theC2v symmetry is broken.

Whenk.2, the nontrivial solution of Eq.s26d appears at
a givenb8 but becomes stable only atb9.b8, so thatr̃sbd
and esbd are discontinuous atb9; instead of the instability
regionb8,b,b9, in the microcanonical ensemble a region
where the specific heat is negative appears, as we shall see
later. TheCkv symmetry is broken in the low temperature
phase, so thatr̃ can be used as an order parameter in reveal-
ing the symmetry breaking, even if it is not continuous atb9.
The transition is then of first order, but keeps the symmetry
structure of a second order one, i.e., in the low temperature
phase there arek pure states related by the symmetry group
also in the case of the first order transition.

In Fig. 1 we report the caloric curve, i.e., the temperature
T=b−1 as a function of the average energysper degree of
freedomd e, for three values ofk, k=1, 2, and 3. As previ-
ously discussed, the temperature is an analytic function ofe
for k=1; for k=2 the system undergoes a second order phase
transition at a critical temperatureTc=D, that changes to first
order fork.2.

In Figs. 2 and 3 we report the average potential energyv
as a function of the average energye and the temperatureT
as a function ofv, respectively. It is apparent that, forkù2,
the phase transition point always corresponds tovc=D.

Another feature which shows up in Figs. 2 and 3 is that
the average potential energyv never exceeds the valueD,
i.e., although the maximum ofV/N is equal to 2D, the region
v.D is not thermodynamically accessible to the system. The

reason for this is in the mean-field nature of the system and
in the fact that we are working in the thermodynamic limit
N→`. According to Eqs.s4d, the potential energy can be
written as a function of the collective variablesc and s de-
fined in Eqs.s5d, which are the components of the function
whose statistical average is the order parameter, i.e., the
“magnetization.” In the thermodynamic limit these functions
become constants, whose value coincides with their statisti-
cal average, and sincekcl=ksl=0 for T.Tc, and from Eqs.
s4d this impliesv=D for all T.Tc.

As we shall see later, this fact remains true also in the
microcanonical ensemble, which, however, isnot equivalent
to the canonical ensemble for the present model, due to the
long-range nature of the interactions.

B. Microcanonical thermodynamics

As in other simple mean-field models, also in the case of
thekTM it is possibile to perform a calculation of the micro-

FIG. 1. TemperatureT as a function of canonical average energy
e for three different values ofk; for k=1 there is no phase transition,
while for k=2 there is a second order transition and fork.2 a first
order one.

FIG. 2. Canonical average potential energyv as a function of
canonical average energye for k=1, 2 and 3. The upper phase
transition point is, for∀kù2, vc=D.
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canonical partition function, or microcanonical density of
states in phase space, given by

VN,ksEd =E dNpdNw

N!
dsHk − Ed. s34d

The computation ofV is similar to that ofZ in the canonical
case, so that we will go through it with less detail.

Using the integral representation of the delta function, we
get

VN,ksEd =E db

2p
E dNpdNw

N!
e−ibsHk−Ed. s35d

Now, as we are looking for a saddle-point evaluation of the
integral overb, we can rotate the integration path on the
imaginary axis in the complex-b plane. This is justified
because, as in the canonical case, the saddle point is located
on this axis. We can now perform the integration over the
momenta and use the fact thatVkswd=Vkfcswd ,sswdg, see Eq.
s4d, to obtain

VN,ksEd = CNrNE dbdjdhb −N
2ebfE−Vksj,hdg

3E dNwdhNfj − cswdgjdhNfh − sswdgj, s36d

where r=N/L and the constantCN gives only a constant
contribution to the entropy per particle, i.e., it is at most of
ordereN. The last integral can be evaluated using again the
integral representation of the delta function, and rotating then
the integration path as previously discussed; it turns out to be

E dm dn

s2pd2 e−Nsmj+nhd E dNweoism cos wi+n sin wid

=E dmdn

s2pd2e−Nsmj+nhdf2pI0sLdgN,

having definedL=Îm2+n2; I0 is a Bessel function as before.
We can then write the density of states as

VN,ksed = CNrNE dmeNfksm,ed, s37d

wherem;sb ,j ,h ,m ,nd, e=E/N and

fksm,ed = be− bDf1 − Resj + ihdkg − 1
2log b − mj − nh

+ log I0sLd.

Then, using the saddle-point theorem, the entropy per par-
ticle, s=S/N, is given byskB=1d:

sksed = lim
N→`

1

N
log VN,ksed = max

m
fksm,ed. s38d

To find the maximum offksm ,ed one can calculate analyti-
cally some derivatives off to obtain a one-dimensional prob-
lem that can be easily solved numerically with standard
methods.

As already done in the case of the canonical ensemble, in
Fig. 4 we report the microcanonical caloric curve, i.e., the
temperatureT as a function of the energysper degree of
freedomd e, Tsed=f]s/]eg−1 for three values ofk, k=1, 2, and
3. As in the canonical case, the temperature is an analytic
function ofe for k=1, while fork=2 the system undergoes a
second-order phase transition at a certain energy valueec,
that changes to first order fork.2.

We note that, fork.2, in a region of energies smaller
than the critical energyec of the first-order phase transition
the curveTsed has a negative slope, i.e., the system has a
negative specific heat. ThekTM is then another physical
model where this feature is foundssee, e.g., Ref.f13g for
other examplesd. This is not surprising at all since we are
considering themicrocanical thermodynamics of a system
with long-range interactions; such a region isnot present
when we consider the canonical ensemble, as shown earlier;
there, the region of negative specific heat corresponds to the
region of instability of the non-trivial solution of the saddle-
point equations.

FIG. 3. TemperatureT as a function of canonical average poten-
tial energyv for three different values ofk.

FIG. 4. Microcanonical temperatureT as a function of energye
for three different values ofk; for k=1 there is no phase transition,
while for k=2 there is a second order transition and fork.2 a first
order one.
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In Figs. 5 and 6 we report the average microcanonical
potential energyv as a function ofe and the microcanonical
temperatureT as a function ofv, respectively. It is apparent
that, forkù2, the phase transition point always corresponds
to vc=D.

As in the canonical case, the average potential energyv
never exceeds the valueD, i.e., the regionv.D is not ther-
modynamically accessible to the system also in the microca-
nonical ensemble.

C. Topology of configuration space

In this section we want to investigate the relation between
the phase transitions occurring in thekTM and the topology
of its configuration space. Given the potential energyV, the
following submanifolds of configuration space are defined:

Mv ; hwuVswd ø Nvj.

As v varies from the minimum to the maximum allowed
value ofVswd /N, the manifoldsMv progressively cover the

whole configuration space. These submanifolds, or their
boundariesSv=]Mv, are then a possible way to depict the
potential energy landscape of the system. The topology of
theMv’s can be studied using Morse theoryf17g: whenever a
critical value of Vswd /N—i.e., a value corresponding to one
or more critical points, where the differential ofVswd /N
vanishes—is crossed, the topology of theMv’s change. It has
been conjecturedf3,6g that some of these topology changes
are the “deep” cause of the presence of a phase transition.
The correspondence between major topology changes of the
Mv’s andSv’s and phase transitions has been checked in two
particular modelsf5,7g; more recently, it has been provedf8g
that a topology change is anecessarycondition for a phase
transition under rather general assumptionsf28g, but the suf-
ficiency conditions are still lacking.

A natural way to characterize topology changes involves
the computation of sometopological invariantsof the mani-
folds under investigation. One of such invariants is the Euler
characteristicx: in Refs. f5,7g it was shown that the Euler
characteristicxsvd of the submanifoldsMv and/or of theSv
shows a singularity in correspondence of the potential energy
valuevc=vsecd at which the transition takes place: this seems
then to signal a particularly “strong” topology change. Re-
markably, the Euler characteristic ofMv can be calculated
analytically in our model. The general definition isf18g:

xsvd ; xsMvd = o
i=0

N

s− 1dimisMvd, s39d

where theMorse numbersmisMvd are the number of critical
points of index i of the functionVswd that belong to the
manifold Mv. As already mentioned, the critical points
scalled saddles in other contexts, e.g., in the physics of
glassesd w̃ are defined by the conditiondVksw̃d=0, and their
index i sotherwise called theorder of the saddled is defined
as the number of negative eigenvalues of the Hessian matrix

Hi j
k sw̃d = US ]2Vk

]wi ] w j
DU

w̃

. s40d

To be valid, Eq.s39d requires thatVswd is a Morse function,
i.e., that its critical points are nondegenerate: this means that
all the eigenvalues of the Hessian are nonzero at a critical
point and that the critical points themselves are isolated.

To determine the critical points we have then to solve the
system

]Vk

]w j
= 0 ∀ j = 1, . . . ,N s41d

that is, inserting Eq.s4d in the earlier equations

− Dk Refisc + isdk−1eiw jg = Dkzk−1 sinfsk − 1dc + w jg = 0

∀ j = 1, . . . ,N, s42d

where we definedc+ is=zeic. From Eq.s4d we have

Vkswd = NDf1 − zk cosskcdg, s43d

then all the critical points withzsw̃d=0 have energyv
=Vsw̃d /N=D. We note that they correspond to vanishing

FIG. 5. Microcanonical average potential energyv as a function
of energye for k=1,2, and 3. Thephase transition point is, for
∀kù2, vc=D.

FIG. 6. Microcanonical temperatureT as a function of microca-
nonical average potential energy energyv for three different values
of k.

ANGELANI et al. PHYSICAL REVIEW E 71, 036152s2005d

036152-6



magnetization. Let us now consider all the critical points
with zsw̃dÞ0. Then Eq.s42d becomes

sinfsk − 1dc + w jg = 0,

∀ j = 1, . . . ,N, s44d

and its solutions are

w̃ j
m = fmjp − sk − 1dcgmod 2p, s45d

wheremj P h0,1j. Since in Eq.s42d z appears to thek−1th
power, in the casek=1 Eqs. s42d and s44d coincide. This
means that the solutions given in Eq.s45d areall the critical
points, regardless of their energy, in the casek=1 and all the
critical pointsbut those with energyv=D in the casek.1.
The critical point w̃m is then characterized by the setm
;hmjj. To determine the unknown constantc we have to
substitute Eq.s45d in the self-consistency equation

zeic = c + is = N−1o
j

eiw j = N−1e−icsk−1do
j

s− 1dnj . s46d

If we introduce the quantitynsw̃d defined by

n = N−1o
j

mj , s47d

which means

1 – 2n = N−1o
j

s− 1dnj , s48d

we have from Eq.s46d

z = u1 – 2nu, s49d

cl = H2lp/k for n , 1/2,

s2l + 1dp/k for n . 1/2,
s50d

wherel PZ. Then the choice of the sethmjj is not sufficient
to specify the sethw jj, because the constantc can assume
some different values. This fact is connected with the sym-
metry structure of the potential energy surface: the different
values of cl correspond to the symmetry-related critical
points under the groupCkv.

We can then state that all the critical points with
zÞ0-whose energyvÞD—have the form

w̃ j
m,l = fmjp − sk − 1dclgmod 2p. s51d

The Hessian matrix is given by

Hi j
k = Dk RefN−1sk − 1dsc + isdk−2eiswi+w jd + di jsc + isdk−1esiwidg.

s52d

In the thermodynamic limit it becomes diagonal

Hi j
k = di jDkzk−1 cosfcsk − 1d + wig. s53d

One cannota priori neglect the contribution of the off-
diagonal terms to the eigenvalues ofH, but we have numeri-
cally checked that their contribution change at most the sign
of only one eigenvalue overN: we note that in the case of the
mean-fieldXY model this result has been proven explicitly

f7g. Neglecting the off-diagonal contributions, the eigenval-
ues of the Hessian calculated in the critical pointw̃ are ob-
tained substituting Eq.s51d in Eq. s53d:

l j = s− 1dmjDkzk−1, s54d

so the index of the critical point is simply the number of
mj =1 in the setm; we can identify the quantitynsw̃d given
by Eq.s47d with the fractional indexn /N of the critical point
w̃. Then, from Eqs.s4d, s49d, and s50d we get a relation
between the fractional indexnsw̃d and the potential energy
vsw̃d=Vsw̃d /N at each critical pointw̃:

nsvd =
1

2
F1 − sgnS1 −

v
D
DU1 −

v
D
U1/kG . s55d

Moreover, the number of critical points of given indexn is
simply the number of way in which one can choosen times
1 among thehmjj, see Eq.s51d , multiplied for a constantAk

that takes into account the degeneracy introduced by Eq.
s50d.

We have then completely characterized the critical points
with zÞ0. Now we are going to argue that, in order to com-
pute the Euler characteristic of the manifoldsMv, we can
neglect the critical points withz=0, thus showing that the
knowledge of the critical points considered so far is suffi-
cient. The critical points withz=0 are degenerate: the Hes-
sian vanishes at these points. This means that the potential
energy is no longer a proper Morse function whenvùD, and
we could use its critical points to compute the Euler charac-
teristic of the manifoldsMv only whenv,D. To overcome
this difficulty we reason as follows. Morse functions are
dense in an open set of the space of smooth functions: this
means, in practice, that if a functionf is not a Morse func-
tion, any small perturbation will make it a proper Morse
function f19g, and we can consider, as our Morse function,

the functionṼk, i.e., the potential energy plus a linear term
which can made as small as we want

Ṽk = Vk + o
i=1

N

hiwi , s56d

where hPRN. The perturbation changes only slightly the
critical points withzÞ0, but completely removes the points
with z=0 for anyhÞ0, no matter how small. All the critical
points of this function are given by the solutions of the equa-
tions

sinfsk − 1dc + w jg = hj ∀ j = 1, . . . ,N, s57d

which are only a slight deformation of Eqs.s44d, so that
provided all theh’s are very small the numerical values of
critical points and critical levels will essentially coincide
with those computed so far, in the caseh=0 but assuming
zÞ0.

The fractional indexn=n /N of the critical points is a well
defined monotonic function of their potential energyv, given
by Eq. s55d, and the number of critical points of a given
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index n is AksNn d. Then the Morse indexesmnsMvd of the

manifold Mv are given byAksNn d if n /Nønsvd and 0 other-

wise, and the Euler characteristic is

xsvd = Ak o
n=0

Nnsvd

s− 1dnSN

n
D = Aks− 1dNnsvdFN − 1

Nnsvd G ,

s58d

using the relationon=0
m s−1dNs N

n
d=s−1dms N−1

m
d.

In Fig. 7 we plotssvd=limN→`s1/Ndlog uxsvdu, that, from
Eq. s58d , is given by

ssvd = − nsvdlog nsvd − f1 − nsvdglog f1 − nsvdg. s59d

It has to be stressed thatssvd is a purelytopologicalquan-
tity, being related only to the properties of the potential en-
ergy surface defined byVkswd, and, in particular, to the en-
ergy distribution of its saddle points. From Fig. 7 we can see
that there is an evident signature of the phase transition in the
analytic properties ofssvd. First, we observe that the region
v.D is never reached by the system, as discussed before
and showed in Figs. 5 and 6 as to the microcanonical case,
and in Figs. 2 and 3 as to the canonical case; this region is
characterized bys8svd,0. The main observations are that:
sid for k=1, where there is no phase transition, the function
ssvd is analytic; sii d for k=2, when we observe a second
order phase transition, the first derivative ofssvd is discon-
tinuous atvc=vsecd=D, and its second derivative isnegative
around the singular point;siii d for kù3 the first derivative of
ssvd is also discontinuous at the transition pointvc=D, but
its second derivative ispositivearoundvc. In this casea first
order transition takes place. Therefore the investigation of
the potential energy topology, viassvd, allows us to establish

not only the location but also the order of the phase transi-
tions, without introducing any statistical measure.

The previous results suggest us to conjecture that there is
a relation between the thermodynamic entropy of the system
and the topological properties of the potential energy land-
scape, as probed byssvd. We recall that the presence of a
first order transition with a discontinuity in the energy is
generally relatedf20g to a region of negative specific heat,
i.e., of positive second derivative of the entropy. Thus, it
seems that at least around the transition point the thermody-
namic entropy andsfvsedg are closely related: more pre-
cisely, it seems that the jump in the second derivative ofssed
is determined by the jump in the second derivative of
sfvsedg. Then it should be possible to write

ssed , s„vsed… + Rsed s60d

whereRsed is analyticsor, at least,C2d around the transition
point.

In Sec. III we explain how such a link between thermo-
dynamics and topology could be obtained. But before doing
so we show a different way of looking at the topology of the
submanifolds of configuration space defined by the potential
energy.

D. Topology of the order parameter space

A feature of many mean-field modelssalthough not of all
of themd is that the potential energy can be written as a
function of a collective variable, whose statistical average is
the order parameter. In the case of thek-trigonometric model
this variable is the two-dimensional “magnetization” vector
defined asm=sc,sd, wherefsee Eqs.s5dg:

c =
1

N
o
i=1

N

cosswid,

s=
1

N
o
i=1

N

sinswid. s61d

Written in terms ofsc,sd, the potential energy is a function
defined on the unitary disk in the real plane, which is given
by fsee Eq.s4dg:

Vksc,sd = NDH1 − o
n=0

fk/2g S k

2n
Ds− 1dnck−2ns2nJ . s62d

In the particular casesk=1,2,3 thepotential energyVk reads
as

V1sc,sd = NDs1 − cd, s63d

V2sc,sd = NDs1 − c2 + s2d, s64d

V3sc,sd = NDs1 − c3 + 3cs2d, s65d

and it is then natural to investigate the topology of theMv’s
seen as submanifolds of the unitary disk in the plane, i.e., we
now consider the submanifolds

FIG. 7. Logarithmic Euler characteristic of theMv manifolds
ssvd ssee textd as a function of the potential energyv. The phase
transition is signaled as a singularity of the first derivative atvc

=D; the sign of the second derivative around the singular point
allows to discriminate between transitions of different order. The
regionv.D, in which s8svd,0, in not reached by the systemssee
textd.
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Mv ; hsc,sd P D2uVksc,sd ø Nvj, s66d

where D2;hsc,sdPR2uc2+s2ø1j. The Mv’s are nothing
but theMv’s projected onto the magnetization plane.

The topology of these manifolds can be studied directly,
by simply drawing them. In the casek=1, where no phase
transition is present, no topology changes occur in theMv’s,
i.e., all of them are topologically equivalent to a single disk
D2 sFig. 8d. Whenk=2,3, and aphase transition is present,
there is a topology change precisely atvc=D, wherek disks
merge into a single diskssee Figs. 9 and 10d. The detail of
the transition, i.e., the number of disks which merge into one,
clearly reflects the nature of the symmetry breaking for the
particular value ofk consideredssimilar pictures are obtained
for k.3d. Thus, when projected onto the order parameter
space, the correspondence between topology changes and
phase transitions becomes one-to-onesthis was already
found in Ref.f21g for the mean-fieldXY modeld; however, at
variance with the study of the topology of the “full”Mv’s, no
direct way to discriminate between first and second-order
transitions seems available in this picture.

III. TOPOLOGY AND THERMODYNAMICS:
A DIRECT LINK

We now show how it is possible to establish a general
relationship between topology and thermodynamics. This
can be achieved by improving some preliminary results on
the subject reported in Refs.f22,23g.

Consider a generic classical system described by a Hamil-
tonian

H =
1

2o
i=1

N

pi
2 + Vsqd

whereq=sq1, . . . ,qNd and the symbols have standard mean-
ing. Then consider the microcanonical entropySsEd defined
as

SsEd =
kB

N
log VnsEd, s67d

wheren=2N−1, where we shall putkB=1 and where

VnsEd =
1

N!
E

SE

ds

i¹Hi
, s68d

with i¹Hi=hSipi
2+f¹iVsqdg2j1/2, i.e.,Vn is the microcanoni-

cal density of states. HereSE is the constant-energy hyper-
surface in the 2N-dimensional phase spaceG corresponding
to the total energyE, that is SE=hsp1, . . . ,pN,q1, . . . ,qNd
PGuHsp,qd=Ej.

From the general derivation formulaf24g:

dk

dEkE
SE

a ds =E
SE

Aksadds, s69d

wherea is an integrable function andA is the operator

Asad =
¹

i¹Hi
Sa

¹H

i¹HiD
the following result is worked out:

dVnsEd
dE

=
1

N!
E

SE

ds

i¹Hi
M1

!

i¹Hi
+ OS 1

N
D , s70d

whereM1
!= ¹ s¹H / i¹Hid. M1

! is directly proportional to the
mean curvatureM1 of SE seen as a submanifold ofRN f25g
according to the simple relationM1=−M1

! / s2N−1d. By inte-
grating equation Eq.s70d we obtain the following equivalent
expression forVnsEd:

VnsEd =
1

N!
E

0

E

dhE
Sh

ds

i¹Hi
M1

!

i¹Hi
=

1

N!
E

ME

dm
M1

!

i¹Hi

s71d

and then, at largeN, considering that the volume measuredm
concentrates on the boundarySE, we write

1

N!
E

ME

dm
M1

!

i¹Hi
.

sdEd
N!

E
SE

ds

i¹Hi
M1

!

i¹Hi

.
sdEd
N!

ki¹Hi−1lE
SE

ds

i¹Hi
M1

!, s72d

FIG. 9. The submanifoldsMv in the case k=2 for v
=0.5D ,D ,1.5D ,2D sfrom left to rightd. As v,vc=D the submani-
folds are topologically equivalent to two disconnected disks, while
asv.vc they are equivalent to a single disk.

FIG. 10. The submanifoldsMv in the case k=3 for v
=0.5D ,D ,1.5D ,2D sfrom left to rightd. As v,vc=D the submani-
folds are topologically equivalent to three disconnected disks, while
asv.vc they are equivalent to a single disk.

FIG. 8. The submanifoldsMv in the case k=1 for v
=0.5D ,D ,1.5D ,2D sfrom left to rightd. All the submanifolds are
topologically equivalent to a single disk.

TOPOLOGY AND PHASE TRANSITIONS: FROM AN… PHYSICAL REVIEW E 71, 036152s2005d

036152-9



where, in the last approximate replacement, we have used
that i¹Hi is positive and only very weakly varying at
largeN.

By means of Hölder’s inequality for integrals we get

E
SE

ds

i¹Hi
M1

! ø SE
SE

ds

i¹Hi
uM1

!uND1/NSE
SE

ds

i¹HiDsN−1d/N

,

the sign of equality being better approached whenM1
! is

everywhere positive. Hence, using Eqs.s68d, s71d, ands72d

VnsEd ø fVnsEdgsN−1d/NS 1

N!
E

SE

ds

i¹Hi
uM1

!uND1/N dE

ki¹Hil

s73d

and assuming that a regular deformation factordsEd exists
f29g such that we can write

fVnsEdg1/N =
dsEddE

ki¹Hil S 1

N!
E

SE

ds

i¹Hi
uM1

!uND1/N

s74d

we then obtain

VnsEd =
2NfdsEdgNsdEdN

ki¹HilN+1 E
SE

dsFuKGu +
RsEd
2NN!

G , s75d

where we have used 2−NuM1
!uN=sk1+k2+¯ +kNdN=N! uKGu

+RsEd, with k1, . . . ,kN the principal curvatures ofSE, and
KG is the Gauss-Kronecker curvature ofSE, KG=pi=1

N ki.
RsEd is a remainder. Again we have used thati¹Hi is only
very weakly varying at largeN and that it is always positive.

According to the Chern-Lashof theoremf26g

E
SE

dsuKGu = volsS1
N−1do

i=0

N

misSEd s76d

whereS1
N−1 is ansN−1d-dimensional hypersphere of unit ra-

dius andmisSEd are the Morse indexes ofSE which are de-
fined exactly as those of theMv’s seen in the previous sec-
tions, i.e., as the numberm of critical points of indexi on a
given level setSE=H−1sEd; a critical point is a point where
¹H=0, the indexi of a critical point is the number of nega-
tive eigenvalues of the Hessian ofH computed at the critical
point.

Finally the entropy per degree of freedom reads as

SsEd =
1

N
log VnsEd =

1

N
log FvolsS1

N−1do
i=0

N

misSEd

+E
SE

ds
RsEd
2NN! G +

1

N
log

2NfdsEdgNsdEdN

ki¹HilN+1 . s77d

The meaning of Eq.s77d is better understood if we consider
that the Morse indexesmisMd of a differentiable manifoldM
are related to the Betti numbersbisMd of the same manifold
by the inequalities

misMd ù bisMd. s78d

The Betti numbers are fundamentaltopological invariants
f18g of differentiable manifolds; they are the

diffeomorphism-invariant dimensions of suitable vector
spacessthe de Rham’s cohomology spacesd, thus they are
integer numbers. The equality sign holds only for the so-
called perfect Morse functions, which are rare, however, at
large dimension we can safely replace Eq.s78d with misMd
.bisMd ssee, e.g., Ref.f7gd.

Equations77d, rewritten as

SsEd .
1

N
logFvolsS1

N−1do
i=0

N

bisSEd +E
SE

ds
RsEd
2NN! G

+
1

N
log

2NfdsEdgNsdEdN

ki¹HilN+1 , s79d

links topological properties of themicroscopicphase space
with the macroscopicthermodynamic potentialSsEd.

In particular, even though the functionRsEd is unknown,
sudden changes of the topology of the hypersurfacesSE fre-
flected by the energy variation ofobisSEdg necessarily affect
the energy variation of the entropy.

Finally, we resort to the fact that—at largeN—the volume
measure ofSE concentrates onSk2Kl1/2

N−1
3MkVl, whereSk2Kl1/2

N−1

=hsp1, . . . ,pNduopi
2=k2Klj is the kinetic energy hypersphere

and MkVl=hsq1, . . . ,qNduVsqdø kVlj, so thatSE can be ap-
proximated by this product manifold, and we resort to the
Kunneth formulaf18g for the Betti numbers of a product
manifold A3B, i.e.,

bisA 3 Bd = o
j+k=i

bjsAdbksBd s80d

which, applied toSk2Kl1/2
N−1

3MkVl, gives bisSEd=2bisMvd for

i =1, . . . ,N−1, andbjsSEd=bjsMvd for j =0,N, since all the
Betti numbers of an hypersphere vanish butb0 andbN which
are equal to 1f18g. Eventually we obtain

Ssvd .
1

N
log HvolsS1

N−1dFb0 + o
i=1

N−1

2bisMvd + bNG
+ R̃fEsvdgJ +

1

N
log

2NfdsEdgNsdEdN

ki¹HilN+1 , s81d

whereR̃fEsvdg stands for the integral on the product mani-
fold of the remainder which appears in Eq.s79d. The equa-
tion earlier makes explicit the fact that the kinetic energy
term of a standard Hamiltonian is topologically trivial.

From this equation we see that a fundamental topological
quantity, the sum of the Betti numbers of the submanifolds
Mv=hsq1, . . . ,qNdPRNuVsqdøvj of configuration space, is
related, although with some approximation, to the thermody-
namic entropy of the system.

While a relationship between topology and thermodynam-
ics exists, as is shown by both Eqs.s81d ands77d, an analytic
formula linking the Euler characteristic to thermodynamics
has not been found yet and is unlikely to exist. Therefore, in
those cases allowing the analytic computation of the Morse
indexessas for the models tackled in this paperd, besides the
computation of the Euler characteristic through the formula
s39d, we can use the Morse indexes to replace the sumfb0
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+Si=1
N−12bisMvd+bNg in Eq. s81d with fm0+Si=1

N−12misMvd
+mNg, having resorted again to the estimatebisMd.misMd.
Then we can plot this sum, that we shall denote bym, against
the potential energy density for the three different cases con-
sidered:k=1,2,3. Theresult is shown in Fig. 11, where
sharp differences are evident between the three situations:sid
k=1, absence of any phase transition, in which case the pat-
tern of m vs v is smooth;sii d k=2, second-order phase tran-
sition, in which case the pattern ofm vs v displays a sharp
nondifferentiable change at the phase transition point;siii d
k=3, first-order phase transition, in which case the pattern of
m vs v again displays a sharp nondifferentiable change at the
phase transition point which is approached from the left with
an opposite concavity with respect to the second-order tran-
sition case. Likewise the Euler characteristic, the quantitym
is in one-to-one correspondence with topology changes of
the manifoldsMv, but m has the advantage of being directly
related with thermodynamic entropy.

Both the general analytic result of Eq.s81d and the par-
ticular analytic result obtained for thekTM and reported in
Fig. 11 are of great relevance in view of a deeper understand-
ing of the relationship between topology changes of configu-
ration space and phase transitions: further work is ongoing
along this direction.

As a final comment, let us remark that the clearcut differ-
ences among the three different cases in Fig. 11 are detected
prior to and independently ofthe definition of any statistical
measure in configuration space: the relevant information
about the macroscopic physical behavior is already contained
in the microscopic interaction potential itself and concealed
in its way of shaping configuration space submanifolds.

IV. CONCLUDING REMARKS

We have presented a mean-field model whose thermody-
namics is exactly solvable in both the canonical and the mi-
crocanonical ensemble: the model depends on a parameterk
and exhibits no transitions, a continuous phase transition and
a discountinuous one, in the casesk=1, k=2, andkù3, re-

spectively. For this model, a clear and sharp relation between
the presence of a phase transition and a particular topology
change in the submanifolds of theN-dimensional configura-
tion space is analytically worked out: this correspondence
becomes one-to-one if we look at the submanifolds of a re-
duced two-dimensional configuration space spanned by col-
lective variables. Moreover, not only the presence and the
location in energy of the transition can be inferred by looking
at the behavior of topological quantities: also the order of the
transition is related to the behavior of a topological invariant
of the earlier mentioned submanifolds, their Euler character-
istic. This suggests that topological quantities are linked in
general to thermodynamic observables. Such a general link,
although based on some approximations, has been derived in
the final section of the paper.

The results presented here confirm the validity and the
potential of the topological approach to phase transitions,
which has recently received a rigorous background via the
proof of a theoremf8g stating that, for systems with short-
ranged interactions, topology changes in the submanifolds of
configuration space are anecessarycondition for a phase
transition to take place. The model we studied here is not
short ranged, thus the theorem might probably be extended
to a more general class of systems. However, we would like
to mention the case of a mean-field model, the fully coupled
w4 model, which has been recently studiedf27g, and where
the relation between the topology changes in the submani-
folds of the configuration space and the phase transition is
less straightforward. Further work is then needed to assess
the full potential and the limits of the topological approach to
phase transitions.

Concerning in particular first-order phase transitions, it
would be very interesting to test the topological approach of
the present paper in models with more realistic interactions,
i.e., described by potentials with a hard-core repulsion, short
ranged, and in two or three space dimensions. In other
words, it would be interesting to find the topological coun-
terpart of the phenomena of freezing and condensation. On
general grounds, and in particular on the basis of the theorem
in Ref. f8g, topology—in the sense of the present paper—is
expected to play a role also in these systems. Consider, e.g.,
inverse power potentials: as in this case the theorem in Ref.
f8g applies, the submanifoldsMv’s andSv’s must undergo a
nontrivial and energy-depending topology change at the first-
order transition point. However, how this topology change is
shaped remains unknown and deserves investigation. On the
other hand, finding all the critical points of a short-ranged
potential energy function, in two or three dimensions, seems
at present a very hard task, from both analytical and numeri-
cal points of view. The situation is not better in the case of
hard spheres systems, that is of entropy driven phase transi-
tions. In this case, thessingulard interaction potential cannot
play any longer the role of Morse function, what does not
mean that the connection between topology and phase tran-
sitions is lost, but that in this case other Morse functions are
to be used to probe and characterize topologysa possible
choice could be the sum of all the pairwise euclidean dis-
tances between the hard spheres of a system: it is real valued,
it has a minimum when the density is maximum, that is for
close packing; the discussion of nondegeneracy is more in-

FIG. 11. Logarithm of the sum of the Morse indexes divided by
N, m=s1/Ndlog fm0+2Si=1

N−1misMvd+mNg of the manifoldsMv vs
the energy densityv, scaled withD, for k=1,2,3.
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volved and here would be out of placed. The spatial density
of spheres should replace energy in the role of control pa-
rameter. This is still a completely open field of investigation.

In conclusion, applying the topological approach to “real”
first-order transitions will probably need a substantial

advance in both the analytical and numerical methodologies.
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