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The elsewhere surmized topological origin of phase transitions is given here important evidence through the
analytic study of an exactly solvable model for which both topology of submanifolds of configuration space
and thermodynamics are worked out. The model is a mean-field one \kittody interaction. It undergoes a
second-order phase transition for2 and a first-order one fde>2. This opens a perspective for the under-
standing of the deep origin of first and second-order phase transitions, respectively. In particular, a remarkable
theoretical result consists of a mathematical characterization of first-order transitions. Moreover, we show that
a “reduced” configuration space can be defined in terms of collective variables, such that the correspondence
between phase transitions and topology changes becomes one-to-one, for this model. Finally, an unusual
relationship is worked out between the microscopic description of a clagéibablly system and its macro-
scopic thermodynamic behavior. This consists of a functional dependence of thermodynamic entropy upon the
Morse indexes of the critical pointésaddle of the constant energy hypersurfaces of the microscopic
2N-dimensional phase space. Thus phase spand configuration spageopology is directly related to
thermodynamics.
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[. INTRODUCTION theoretical definitions and methods are challenged by the ex-
Thermodynamical phase transitions are certainly one Ogerlm_entally observed phase transitions occurring in s_mall
. . e ; lassical and quantum systelimanoscopic and mesoscopic
the main topics O.f statistical physms. A huge amount OfIike atomic and molecular clusters, polymers and proteins,
work, both theoretical and experimental, has been done duggse_Einstein condensates, droplets of quantum liquids, etc.
ing the past decades leading to remarkable successes astig|ly, in the mathematically rigorous background of phase
witnessed, for example, by the renormalization group theory;ansitions theory, neither in the Yang-Lee theory for the
of critical phenomena. However, there are still Iong-standingbrand canonical ensemblgl] nor in the Ruelle, Sinai,
open problems about phase transitions; among them we carogov theory for the canonical ensemp®, an a priori
mention amorphous and disordered systéiike glasses and mathematical distinction can be made among the potentials
spin glassgsundergoing “dynamical” transitions, or first- leading to first or second-order phase transitions, respec-
order phase transitions, which are still lacking a satisfactoryively.
theoretical understanding of their origin. Moreover, on the The present paper aims to contribute to the advancement
forefront of modern research in statistical physics, standardf a recently proposed theoretical framework where the sin-
gular behaviors of thermodynamic observables at a phase
transition are attributed to major topology changes in phase

* . . ) _ . space and—equivalently—in configuration spaf&-7].

TEIectro.nlc address: Igca.gngelanl@phys.unlrgmal.lt . . More precisely, in Refs[3-7], it has been proposed that

Also at: Centro Interdipartimentale per lo Studio delle D'nam'ChethermodynamiC phase transitions could be a consequence of
ComplesséCSDO, Universita di Firenze, Istituto Nazionale per la g itaple topology changes of certain submanifolds of the
Fisica della MaterigINFM), Unita di Ricerca di Firenze, and Isti- configuration space defined by the potential energy function.
tuto Nazionale di Fisica NUCleal(dENFN), Sezione di Firenze, via The presence of such top0|ogical Changes has been recently
G. Sansone 1, 1-50019 Sesto Fiorentiffd), Italy, electronic ad-  shown to be anecessarycondition, under fairly general as-
dress: casetti@fi.infn.it sumptions, for the presence of a phase transit&jn how-

*Also at: Centro Interdipartimentale per lo Studio delle Dinamicheever, the converse isot true, and no rigorous results are
ComplesséCSDQ), Universita di Firenze, Istituto Nazionale per la available yet on the sufficient conditions. The analytical or
Fisica della MaterigINFM), Unita di Ricerca di Firenze, and Isti- numerical study of particular models thus remains crucial to
tuto Nazionale di Fisica Nucleat@\NFN), Sezione di Firenze, via get hints towards more general resuykse also Refd9,10]

G. Sansone 1, 1-50019 Sesto Fiorentif#d), Italy, electronic ad-  for recent results on one-dimensional systems, and [R&f.

dress: pettini@arcetri.astro.it as to the fully connected spherical model
SElectronic address: giancarlo.ruocco@romadl.infn.it In this perspective, we stress that the topological approach
'Electronic address: francesco.zamponi@phys.uniromad. it has been hitherto applied only to systems undergoing
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second-order phase transitions. Therefore tackling first-orddace defined by the potential energy as a function ofhe

phase transitions in the topological framework is of greatdegrees of freedom—of simple liquids. The TM is a model

interest, because some insight into the challenging problerfor N independent degrees of freedom with potential energy

of their origin can be obtained, and because this reinforce®) with k=1: V,_;.

the working hypothesis that the topological approach could It shares with Lennard-Jones-like systefit§] the exis-

unify the treatment of the different kinds of phase transitiongence of a regular organization of the critical points of the

in view of encompassing also more “exotic” ones, like glassypotential energy above a given minimufthe elevation in

transitions and the others mentioned earlier. energy of the critical points is proportional to their inglex
In this paper we first study a model which, according toand a regular distribution of the minima in the configuration

the value of a parameter, has no transition or undergoes space(nearest-neighbor minima lie at a well defined Euclid-

first or a second-order transition. Remarkably, for this modekan distance The PES of th&TM maintains the main fea-

an exact analytical computation is possible of the Euletures of the TM[16], introducing, however, a more realistic

characteristic—that is a topological invariant—of those sub{feature, namely the interaction among the degrees of free-

manifolds of the configuration space whose topologicaldom (in the form of ak-body interaction

changes are expected to be related to the phase transition. We Using the relation

find [12] that the phase transition is actually signaled by a _ ,

discontinuity in the Euler characteristi¢e) and that the sign codg; + - + ;) = Re(€¥- - €%, 3)

of the second derivative of(e) indicates the order of the ) ) o _

transition. Then, we study the topology of submanifolds of athe configurational part of the Hamiltonian can be written as

“reduced” configuration space, i.e., the space of some collec- 2l /|

tive variables: in this case we find a one-to-one correspon- _ N

dence between phase transitions and topology changesr.) Vie=NA[1 - Re(c+is)] = NAll -2 (2 )
Finally, we derive a general result showing that an ana-

lytic estimateof another topological invariant of the same

submanifolds can be worked out which allows to directly

link topology and thermodynamic entropy.

n=0
X (= 1)”c"'2”52”] , (4)

wherec ands are collective variables, functions f;}:

IIl. AKEY STUDY 1
c=—2 cose;,

In this section we present a study of the thermodynamical N
properties of the mean-fieldtrigonometric mode(kTM), as
well as of the topological properties of its configuration 1
space. A preliminary study of this model along these lines s==> sing,. (5)
has already been reported in Rgf2]; there only the micro- N
canonical thermodynamics was considered, while here we
are going to discuss also the canonical thermodynamicagb
properties. Being a model with long-range interactions which
may undergo also first-order phase transitions, we expect ca- o
nonical and microcanonical thermodynamic functions to be o — @ +{—,

We observe also that the model has a symmetry group
tained by the transformations

different, at least close to first-order transitidis)]. k
The KTM is defined by the Hamiltonian
N ¢i— @i (6)
Hi= > Eﬁiz"‘Vk(le, N 1 If we think of ¢; as the angle between a unitary vector in a

=1 plane and the horizontal axis of this plane, we find that the

where{¢;} are angular variablesp; € [0,2m), {m} are the first transformations are rotations in this plane of an angle
conjugated momenta, and the potential endrgg given by {(27/k) and the second is the reflection with respect to the
A horizontal axis. This group is also call€y,.
- _ . _ Let us now derive the thermodynamical properties of the
V= Nk_lil,_z_,ik[l CO$@|1+ + ‘Plk)]v (2 KTM.

whereA is the coupling constant. In what follows only the
potential energy part will be considered. This interaction en-
ergy is apparently of a mean-field nature, in that each degree The partition function is
of freedom interacts with all the others; moreover, the inter-

actions arek-body ones. 7= f Al o= j dl e ANAIL-Rac + 19/ o

A. Canonical thermodynamics

The kTM is a generalization of the trigonometric model
(TM) introduced by Madan and Keydd4] as a simple
model for the potential energy surfa@@ES—the hypersur- introducing é functions for the variables ands:
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= f e} f dx dys(x - ¢) 8y — s)e ANALLRex v,

8

and using the integral representation of #héunction, we
obtain forz,:

d\ d
Zk:fd{<p}fdx dyf N2——F
22T

s @NA(-C) giNAu(y-5) g~ BAN[1-Re(x + iy)K]

:fdxdye—BAN[l—Re(xHy)k]

Xf de_)\ d_MeiN()\x+p,y)
22T

Xf d{(p}e"iN(W'“S). (9)

The last integral is easily computable using E%):
2 N
J d{(P}e—iN()\c+p.s) — f d(pe—i()\ cos ¢+u sin @) , (10)
0

and can be written in term of the Bessel functign

2w
f dpe A %7 = 27735(A), (11)

0

wherex=A cosy, u=A sin ¢, and A=\\?+u?. The parti-
tion function can then be written as

Z, = N2(2m)N2 f dxdyddu

5 @ NL=inx-iuy+BA-BAReX + iy)¥=log(Jo(A)] , (12)

and since thel, function is always positive, there are no

problems in defining its logarithm.

PHYSICAL REVIEW E 71, 036152(2005

0%, Y\, i B) = BA = AX = uy = BA Re(x +iy)¥
= log[1o(A)]. (15

In order to find the stationary points, we first determine the
subspace defined by the equations

99k
— =0, 16
o (16)
Ik
— =0, 17
oy (17
obtaining the relations
A= - BAK Re(x +iy)< (18)
w=BAK Im(x +iy)< (19
thus we get
A= BAK|(x +iy) Y. (20)

Now, using Eqs(18) and (19), we can substituta and u
with x andy in Eq. (15), obtaining, in term of the complex
numberz=x+iy:

0z B) = BA + BA(k— 1)Re 2~ log 1 o(BAP|KPY),
(21)
and using the polar representatizape”:
adp, ; B) = BA + BA(k— 1)p* codky) — log 1o(BAkp D).

(22)
The derivative with respect t¢r leads to
- BA(k— 1)kp sin(ky) = 0, (23)
so that there arek2solutions
nm
z//n:?(nzl,...,zk). (24)

Observing that cd&,) =(-1)" we obtain

We want now to perform a saddle-point evaluation of the  g(p,n; ) = BA + (- 1)"BA(k— 1)p* - log 1 o(BAkp* 1)
integral, so we have to look for the minima of the exponent (25)
in the complex\, i, X,y plane. We note that if that points do
not lie on the imaginary axis of th&,u planes, the free and we can restrict ourselves he=0, 1. Finally, the deriva-
energy of the model would be imaginary. So we can safelftive with respect tg leads to the stationary points equation
rotate the integration path on the imaginary axis in Xhe

k-1
planes, which corresponds to the substitutians=\ and (-D)"p= %, (26)
imw— um, theniA—A and Jy(A)—1o(A), wherel, is the lo(BAKP ™)
modified Bessel function where the modified Bessel functidpis defined by
1 2 cos 1 2n !
lo(A)==—| dge s, (13) (A== decosge ©S¢=]](A). (27)
2 0 2w 0

For n=1 we have only the trivial solutiop=0, because
the | functions are always positive. By using an expansion
for smallp one can show that this solution is a maximum for
g. So we can study only the case0. We note that if there
is a nontrivial solution(i.e., p(B) #0) of Eq. (26), calling

O(B) the value ofg,[ B,p(8)], we have

In conclusion we obtain
Z.=N?(2m)N-2 J dxdychdue NIXYAMEE - (14)

whereg, is the real function
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Z ~ NZ(ZW)N_ZE_Nak(B), (28) 2.0 —— T T T T T T T
and the free energy and internal energy are, respectively, _ lﬁzé . ~
i~ - n --k=3 i i
fi(B) = BB - B~ log(2m), (29) 15 o
&(B) = A(1 -7, Go
o - 5 =
Let us now analyze the case=1. In this case the solu- E L7 o
tions p=0 are not present, so that we have only the solution I s 4,’
1,(BA 05 ' _
= 1(B ). 31)
lo(BA)
There is no phase transition, and using E3f) we have ookl v 1
1L(BA) 00 02 04 06 0.8/A 1.0 12 14 16
e(,B):A[l—l—]. (32) €
' lo(B4)

FIG. 1. Temperatur& as a function of canonical average energy
This is the free energy of trigonometric model that has beeR for three different values d¢: for k=1 there is no phase transition,
mentioned before. while for k=2 there is a second order transition andKor2 a first
For k=2 the solutionp=0 is stable for high temperatures, order one.
but a nontrivial solution of Eq(26) appears aBA=1. The

transition temperature is given by the condition reason for this is in the mean-field nature of the system and
d’g.(p; Be) in the fact that we are working in the thermodynamic limit
TR =2BA(1-B:A) =0, (33)  N—w=. According to Egs(4), the potential energy can be
p=0 written as a function of the collective variablesand s de-

so that we obtain3.A=1; the transition is continuous, and fined in Egs.(5), which are the components of the function

the order parameter ig. It is easy to show that=(c) and whose statistical average is the order parameter, i.e., the

y=(s) [e.g., by adding an external field of the forrNthc  “magnetization.” In the thermodynamic limit these functions

+ks) to the Hamiltonian and performing the lirtit k— O]; become constants, whose value coincides with their statisti-

then the vectofX,y) is the mean magnetization of the spins cal average, and sinde)=(s)=0 for T>T,, and from Egs.

represented by the;. As 7 is the modulus of the magnetiza- (4) this impliesv=A for all T>T. . _

tion, for BA>1, whenp # 0, theC,, symmetry is broken. ‘As we shall see later, this fact remains true also in the
Whenk> 2, the nontrivial solution of Eq(26) appears at m|crocanon|qal ensemble, which, howevern@ equivalent

a given 8’ but becomes stable only gt > ', so thafp(s) to the canonical ensembl_e for th_e present model, due to the

and e(B) are discontinuous g8"; instead of the instability 0ng-range nature of the interactions.

region B’ <B< B, in the microcanonical ensemble a region

where the specific heat is negative appears, as we shall see B. Microcanonical thermodynamics

later. TheC,, symmetry is broken in the low temperature g in other simple mean-field models, also in the case of

phase, so thgt can be used as an order parameter in revealge kT it is possibile to perform a calculation of the micro-
ing the symmetry breaking, even if it is not continuougét

The transition is then of first order, but keeps the symmetry

structure of a second order one, i.e., in the low temperature ' ' ' ' ' ' ' '
phase there ark pure states related by the symmetry group 1oL - 1122% R
also in the case of the first order transition. L - k=3
In Fig. 1 we report the caloric curve, i.e., the temperature ¢ | i
T=8"1 as a function of the average enerfper degree of I G .
freedon) e, for three values ok, k=1, 2, and 3. As previ- 4 06k St i
ously discussed, the temperature is an analytic functiom of > = /,-f"‘
for k=1; for k=2 the system undergoes a second order phast I s
transition at a critical temperatufig=A, that changes to first 04r il 7
order fork>2. i
In Figs. 2 and 3 we report the average potential energy ~ 02 7
as a function of the average energynd the temperaturé r 1
as a function ob, respectively. It is apparent that, fke 2, ople——rd——rAd
the phase transition point always corresponds.toA. 00 02 04 06 Of/A Lo 121416
Another feature which shows up in Figs. 2 and 3 is that
the average potential energynever exceeds the valuk, FIG. 2. Canonical average potential energyas a function of

i.e., although the maximum &f/N is equal to A, the region  canonical average energyfor k=1, 2 and 3. The upper phase
v > A is not thermodynamically accessible to the system. Theransition point is, fofdk=2, v.=A.
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T T T HL 2.0 T T T T T T T T
20 F / N ‘
,~' - k=1 K
- k=1 ; — k=2 7
— k=2 / 15k --k=3 o7 _
s k=3 J . 7
/ o /',
’ e
g ‘ < -
Eiof - s Eor e 7]
ke 1 s /
/.’ 1 4 - //
e | . s == v 7
- & P ,/
0.5+ — 0.5 s N
J/
0.0 L L L L L 1 L L ! L ! 0.0 P R RN NI R R R SR |
0.0 0.2 0.4 0.6 038 L0 00 02 04 06 08 10 12 14 16

v/A e/A

FIG. 3. Temperatur& as a function of canonical average poten-  F|G. 4. Microcanonical temperatufieas a function of energg
tial energyv for three different values df. for three different values df; for k=1 there is no phase transition,
while for k=2 there is a second order transition andKor2 a first
canonical partition function, or microcanonical density of order one.
states in phase space, given by

dN7TdN(P Q e =C NJ dmeka(m,e) 37
0,®= [ T am,-8) 58 W(©=Cop | @7
The computation of) is similar to that ofZ in the canonical WNerem=(8.£,7.u,v), e=E/N and

case, so that we will go through it with less detail. — e _ s B e
Using the integral representation of the delta function, we fi{m.€) = e = BALL =~ Re&+in)] = 5109 f = pé = vy
get +log lo(A).
dg [ dVmdVNe _ ...~ Then, using the saddle-point theorem, the entropy per par-
Oni(B) :f er NI CR (35) ticle, s=S/N, is given by(kg=1):

Now, as we are looking for a saddle-point evaluation of the
integral overB, we can rotate the integration path on the
imaginary axis in the complexg plane. This is justified
because, as in the canonical case, the saddle point is locatéd find the maximum off,(m,e) one can calculate analyti-
on this axis. We can now perform the integration over thecally some derivatives dfto obtain a one-dimensional prob-
momenta and use the fact thgf{¢)=V,[c(¢),s(¢)], see Eq. lem that can be easily solved numerically with standard
(4), to obtain methods.

As already done in the case of the canonical ensemble, in
Fig. 4 we report the microcanonical caloric curve, i.e., the
temperatureT as a function of the energgper degree of
freedon) e, T(e)=[ds/ de]™* for three values ok, k=1, 2, and
Xf dNeSIN[&- (@)} SIN[7-S(¢)]}, (36) 3. As in the canonical case, the temperature is an analytic

function ofe for k=1, while fork=2 the system undergoes a
second-order phase transition at a certain energy value
that changes to first order fér> 2.

s(e) = lim %Iog Qpk(e) = maxf(m,e). (38)
N— m

N
QN,k(E) = CNPN f dpdédnB _Eeﬁ[E‘Vk(&ﬂ)]

where p=N/L and the constanfy gives only a constant
contribution to the entropy per patrticle, i.e., it is at most of We note that, fork>2, in a region of energies smaller

N i ; ;
prdere - The last mtegral can be evalugted using again th?han the critical energg. of the first-order phase transition
integral representation of the delta function, and rotating thert1he curveT(e) has a negative slope, i.e., the system has a

the integration path as previously discussed; it turns out to bﬁegative specific heat. THeTM is then another physical

. model where this feature is foundee, e.g., Refl13] for
e_N(”§+”’7)deGDezi(“ cos gitv sin ¢i other examples This is not surprising at all since we are
considering themicrocanical thermodynamics of a system

dudv _ with long-range interactions; such a regionrist present

= (;T)ze Nustrm2a o(A) I, when we consider the canonical ensemble, as shown earlier;

there, the region of negative specific heat corresponds to the
having defined\ =y u?+17; 1, is a Bessel function as before. region of instability of the non-trivial solution of the saddle-

We can then write the density of states as point equations.

du dv
(2m)?
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whole configuration space. These submanifolds, or their
boundariess,=dM,, are then a possible way to depict the
potential energy landscape of the system. The topology of
, theM,’s can be studied using Morse thedfy/]: whenever a
08 / 1 critical value of V(¢)/N—i.e., a value corresponding to one
< I /2 T 1 or more critical points where the differential ofV(¢)/N
> 0.6 e 7] vanishes—is crossed, the topology of #¢'s change. It has

i s 1 been conjecturef,6] that some of these topology changes
0.4 = - are the “deep” cause of the presence of a phase transition.
The correspondence between major topology changes of the
021 - M,’s and%,’s and phase transitions has been checked in two
L i particular model$5,7]; more recently, it has been provigg]
ookt v L that a topology change isrecessarycondition for a phase

00 02 04 06 08 10 12 14 16 transition under rather general assumptif@, but the suf-

e/A ficiency conditions are still lacking.

FIG. 5. Microcanonical average potential enetggs a function A natural way to CharaCte”Z,e to_pomgy changes '”VF"VeS
of energye for k=1,2, and 3. Thephase transition point is, for the compute_\tlon Qf Sqmmpologlcal Inva}rlantg)f th? mani-
Ok=2, v,=A. folds under investigation. One of such invariants is the Euler
characteristicy: in Refs.[5,7] it was shown that the Euler
Fharacteristicx(v) of the submanifold$vi, and/or of theX,
shows a singularity in correspondence of the potential energy
valuev.=v(e.) at which the transition takes place: this seems
ghen to signal a particularly “strong” topology change. Re-
markably, the Euler characteristic 8, can be calculated
analyticallyin our model. The general definition i48]:

(]

T

| 1
~
Ini
(S N

?

In Figs. 5 and 6 we report the average microcanonica
potential energy as a function ok and the microcanonical
temperaturel as a function ob, respectively. It is apparent
that, fork= 2, the phase transition point always correspond
to v.=A.

As in the canonical case, the average potential energy
never exceeds the valug i.e., the regiorv > A is not ther- N
modynamically accessible to the system also in the microca- x0) = x(M,))=> (- 1) wi(M,), (39
nonical ensemble. i=0

where theMorse numbersgy;(M,) are the number of critical
C. Topology of configuration space points of indexi of the functionV(¢) that belong to the

In this section we want to investigate the relation betweernanifold M,. As already mentioned, the critical points
the phase transitions occurring in tk€M and the topology ~ (called saddlesin other contexts, e.g., in the physics of
of its configuration space. Given the potential enevigthe  9lasses ¢ are defined by the conditiodVi(¢)=0, and their

following submanifolds of configuration space are defined: indexi (otherwise called therder of the saddlgis defined
as the number of negative eigenvalues of the Hessian matrix
M, = {¢|V(¢) < Nuv}.

- PV,
As v varies from the minimum to the maximum allowed Hi (@) = ((9 _ﬁk )
value of V(¢)/N, the manifoldsM,, progressively cover the PP

- (40

To be valid, Eq(39) requires thai/(¢) is a Morse function,

L ' i.e., that its critical points are nondegenerate: this means that
20 ! . all the eigenvalues of the Hessian are nonzero at a critical
- k=1 .," 1 point and that the critical points themselves are isolated.
_ ll:% ; To determine the critical points we have then to solve the
= B K 7 system
201 - My gj=1,..N (41)
=10 s i - 07<P,-_ i=1,...]
,"'/ """""" ° i that is, inserting Eq(4) in the earlier equations
05 i 7 o i)k laie = -1 i -
. - Ak Rdi(c +is)< 4] = Ak sif (k- 1)y + ¢1=0
Oj=1,... N, (42
0.0 L | L 1 L 1 N 1 L 1 )
0.0 0.2 0.4 3/'2 0.8 L0 where we defined+is=/€?. From Eq.(4) we have
Vi) = NA[1 - ¢ cogky)], 43

FIG. 6. Microcanonical temperatufieas a function of microca- N . o
nonical average potential energy enetgfor three different values then all the critical points with{(¢)=0 have energyv
of k. =V(p)/N=A. We note that they correspond to vanishing
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magnetization. Let us now consider all the critical points[7]. Neglecting the off-diagonal contributions, the eigenval-

with £(p) # 0. Then Eq.(42) becomes
sif(k- )¢+ ¢]1=0,

N, (44)

and its solutions are
ZDJm = [mj77 — (K= D Jmod 2r»

wherem, € {0, 1}. Since in Eq.(42) { appears to thé&-1th
power, in the cas&=1 Egs.(42) and (44) coincide. This
means that the solutions given in Eg5) areall the critical
points, regardless of their energy, in the cksd and all the
critical pointsbut those with energy =A in the casek>1.
The critical point'e™ is then characterized by the set
={m;}. To determine the unknown constagitwe have to
substitute Eq(45) in the self-consistency equation

é’ei’/’: c+is= N_lz g% = N"le"i‘/’(k_l)z (-DN. (46)
j j

(45)

If we introduce the quantity(p) defined by

n=N">m;, (47)
i
which means
1-2n=N"1> (- 1", (48)
j
we have from Eq(46)
{=[1-nl, (49)
_ 2l wlk forn<1/2, (50
h= (2l + Da/k forn>1/2,

wherel € Z. Then the choice of the sétn;} is not sufficient
to specify the sefy;}, because the constarit can assume

ues of the Hessian calculated in the critical pamnare ob-
tained substituting Eq51) in Eq. (53):
;= (= DMAKZ, (54)
so the index of the critical point is simply the number of
m;=1 in the setm; we can identify the quantitp(e) given
by Eq.(47) with thefractional indexv/N of the critical point
. Then, from Eqgs.(4), (49), and (50) we get a relation
between the fractional indem(p) and the potential energy
v(©)=V(p)/N at each critical poinf:
1/k]

n(v):%{l—sgr<1—§>‘l—§

Moreover, the number of critical points of given indexs
simply the number of way in which one can choasgmes

1 among thgm;}, see Eq(51) , multiplied for a constant,

that takes into account the degeneracy introduced by Eg.
(50).

We have then completely characterized the critical points
with # 0. Now we are going to argue that, in order to com-
pute the Euler characteristic of the manifolids,, we can
neglect the critical points witl{=0, thus showing that the
knowledge of the critical points considered so far is suffi-
cient. The critical points witii=0 are degenerate: the Hes-
sian vanishes at these points. This means that the potential
energy is no longer a proper Morse function whea A, and
we could use its critical points to compute the Euler charac-
teristic of the manifoldsM, only whenv <A. To overcome
this difficulty we reason as follows. Morse functions are
dense in an open set of the space of smooth functions: this
means, in practice, that if a functidnis not a Morse func-
tion, any small perturbation will make it a proper Morse
function [19], and we can consider, as our Morse function,

the functionvk, i.e., the potential energy plus a linear term
which can made as small as we want

(55)

some different values. This fact is connected with the sym-
metry structure of the potential energy surface: the different N

values of ¢4 correspond to the symmetry-related critical

points under the groug,.

We can then state that all the critical points with

{# 0-whose energy # A—have the form
E’Jm'l =[mym = (k= Dthilmod 2+
The Hessian matrix is given by
M = Ak REN k= 1)(c+is) 2% + 5 (c +is) < 2e9)].
(52

(51)

In the thermodynamic limit it becomes diagonal
M = 80k cod k= 1) + @]

One cannota priori neglect the contribution of the off-
diagonal terms to the eigenvalues?éf but we have numeri-

(53

V= Vie+ 2 hg,
i-1

(56)

where h e RN. The perturbation changes only slightly the
critical points with{ # 0, but completely removes the points
with =0 for anyh# 0, no matter how small. All the critical
points of this function are given by the solutions of the equa-
tions

sin(k=1)¢+¢i]=h; (57)
which are only a slight deformation of Eq&4), so that
provided all theh’s are very small the numerical values of
critical points and critical levels will essentially coincide
with those computed so far, in the calse0 but assuming
(#0.

Oj=1,...N,

cally checked that their contribution change at most the sign The fractional indexn=w/N of the critical points is a well
of only one eigenvalue oveé\: we note that in the case of the defined monotonic function of their potential enetgygiven
mean-fieldXY model this result has been proven explicitly by Eqg. (55), and the number of critical points of a given
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o L T ' T ' T ' ] not only the location but also the order of the phase transi-
I Py A N ~o ] tions, without introducing any statistical measure.
0.6 L P /’ \\ o . The previous results suggest us to conjecture that there is
- ,./" / . \'\.\ 1 a relation between the thermodynamic entropy of the system
05 - i o RN N, . and the topological properties of the potential energy land-
04 i /," 7 N \\,\ ] scape, as probed by(v). We recall that the presence of a
e | S AR N first order transition with a discontinuity in the energy is
03+ )/ 7 R R generally related20] to a region of negative specific heat,
-/ ke SN i.e., of positive second derivative of the entropy. Thus, it
02/ — k=2 SO\ T seems that at least around the transition point the thermody-
o1 I /,/ -- k=3 ‘\\ \\_ namic entropy ands{v(e)] are closely related: more pre-
74 Y cisely, it seems that the jump in the second derivativs(ef
0.0, . 0'5 . 1lo . 115 L >0 is determined_ by the jump in the se;ond derivative of
: : v)A : : olv(e)]. Then it should be possible to write
s(e) ~ a(v(e)) + R(e) (60)

FIG. 7. Logarithmic Euler characteristic of thé, manifolds

o(v) (see text as a function of the potential energy The phase  \yhereR(e) is analytic(or, at leastC? around the transition
transition is signaled as a singularity of the first derivativevat oint.

=A; the sign of the second derivative around the singular poin In Sec. Il we explain how such a link between thermo-
allows to discriminate between transitions of different order. Thedynamics. and topology could be obtained. But before doing
regionu >4, in which o’ (v) <0, in not reached by the systesee ¢\ o show a different way of looking at the topology of the

texy. submanifolds of configuration space defined by the potential
N energy.
index v is Ay ) Then the Morse indexeg,(M,) of the
v N D. Topology of the order parameter space
manifold M, are given byA,| | if »/N<n(v) and O other- A feature of many mean-field modelalthough not of all
wise, and the Euler characteristic is of them is that the potential energy can be written as a
function of a collective variable, whose statistical average is
Nn(v) N N-1 the order parameter. In the case of kagigonometric model
x)=A Y (- 1)”( ) = A (- DN N , this variable is the two-dimensional “magnetization” vector
v=0 v n(v) defined asn=(c,s), where[see Eqs(5)]:
(58) LN
using the relatiorE™ ,(—~1)N(N) = (-1)m(N-1), c= Nz cod @),

In Fig. 7 we plota(v)=limy_..(1/N)log | x(v)], that, from
Eq. (58) , is given by

N
1 .
o(v) = - n()log n(v) - [1 -n()log [1 -n()]. (59) s= N% sin(g). (61)

I.t has FO be stressed thatv) is a purglytopologlcalqua}n- Written in terms of(c,s), the potential energy is a function
tity, being related only to the properties of the potential €Mdefined on the unitary disk in the real plane, which is given
ergy surface defined by,(¢), and, in particular, to the en- ’

o . . . b Eq.(4)]:
ergy distribution of its saddle points. From Fig. 7 we can see y [see Ea(4)]

that there is an evident signature of the phase transition in the 2} /e
analytic properties o0& (v). First, we observe that the region Vi(c,9) =NAY 1- >, (2 )(— 1y (62)
v>A is never reached by the system, as discussed before n=0 \ <N

and ;hoyved in Figs. 5 and 6 as to th_e microcano_nical CaS§y the particular casds=1,2, 3 thepotential energy, reads
and in Figs. 2 and 3 as to the canonical case; this region igq

characterized by’ (v) <0. The main observations are that:

(i) for k=1, where there is no phase transition, the function V,(c,s) =NA(1 -¢), (63)
o(v) is analytic; (ii) for k=2, when we observe a second

order phase transition, the first derivativead) is discon- V,(C,5) =NA(L - c2 + ), (64)
tinuous at.=v(e,)=A, and its second derivative regative

around the singular pointiii ) for k=3 the first derivative of Vs(c,8) = NA(L - 3+ 3¢9), (65)

o(v) is also discontinuous at the transition pointEA, but

its second derivative ipositivearoundv.. In this casea first  and it is then natural to investigate the topology of Mgs
order transition takes placeTherefore the investigation of seen as submanifolds of the unitary disk in the plane, i.e., we
the potential energy topology, vigv), allows us to establish now consider the submanifolds
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) DPDO 900

FIG. 8. The submanifoldsM, in the casek=1 for v FIG. 10. The submanifoldsM, in the casek=3 for v
=0.5A,A,1.50,2A (from left to right. All the submanifolds are =0-94,4,1.87,2A (from left to right. As v <uv.=A the submani-
topologically equivalent to a single disk. folds are topologically equivalent to three disconnected disks, while

asv>v, they are equivalent to a single disk.

M, ={(c,s) € DV,(c,9) < Nv}, (66) ‘
B
where D?={(c,s) e R?c®+s?<1}. The M,’s are nothing SE) N log ,(E), 67
but theM,’s projected onto the magnetlzatlon plane.
The topology of these manifolds can be studied directlywherev=2N-1, where we shall put=1 and where
by simply drawing them. In the cade=1, where no phase
transition is present, no topology changes occur inkigs, Q,(E) = 1 do
i.e., all of them are topologically equivalent to a single disk N! o ||V H||’
D? (Fig. 8. Whenk=2,3, and gphase transition is present,
there is a topology change preciselyvat A, wherek disks ~ with |[VH||={Z;p?+[V,V(9)]3*?, i.e.,Q, is the microcanoni-
merge into a single disksee Figs. 9 and 10The detail of cal density of states. HerEg is the constant-energy hyper-
the transition, i.e., the number of disks which merge into onesurface in the R-dimensional phase spatecorresponding
clearly reflects the nature of the symmetry breaking for theto the total energyE, that is 2g={(p1, ... ,Pn:01, -« In)
particular value ok consideredsimilar pictures are obtained e I'|H(p,q)=E}.
for k>3). Thus, when projected onto the order parameter From the general derivation formula4]:
space, the correspondence between topology changes and
phase transitions becomes one-to-oftkis was already dk
found in Ref.[21] for the mean-fieldY mode); however, at EkL a do= L
variance with the study of the topology of the “fuM,’s, no
direct way to discriminate between first and second -orde{yherea is an integrable function and is the operator
transitions seems available in this picture.
Auﬁ:_i;<ajﬁi)

IVHIA [V H]

(68)

A a)do, (69)

E

IIl. TOPOLOGY AND THERMODYNAMICS:
A DIRECT LINK

the following result is worked out:
We now show how it is possible to establish a general

relationship between topology and thermodynamics. This dQ,(E) _ 1 do M; 1

can be achieved by improving some preliminary results on dE NI ||VH||||VH|| +0| =,

the subject reported in Refl22,23. 2
Consider a generic classical system described by a Hamil-

(70)

whereM=V (VH/|VH])). M] is directly proportional to the

t
onian mean curvatureMl of 3¢ seen as a submanifold &N [25]
1N according to the simple relatidd,=-MJ/(2N-1). By inte-
== pi2+V(Q) grating equation Eq.70) we obtain the following equivalent
i expression fol) (E):
yvhereq:(ql, e ,On) and t_he symbols have standarq mean- 0.(E) = ifEdﬂf do M} =i du M3
i:sg. Then consider the microcanonical entrdi§) defined NI s, IVHIHIVHI Ny [VH]

(71)

and then, at larg8l, considering that the volume measuye
concentrates on the boundaXy, we write

NEZY X |

FIG. 9. The submanifoldsM, in the casek=2 for v
=0.5A,A,1.5A,2A (from left to righy. As v <v.=A the submani- (6E)
folds are topologically equivalent to two disconnected disks, while = <||VH|| 1)] ——Mj, (72
asv>uv, they are equivalent to a single disk. |VH”

M3 (6B do Mj
HIvHl N s IV HTH
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where, in the last approximate replacement, we have usediffeomorphism-invariant dimensions of suitable vector

that ||[VH|| is positive and only very weakly varying at
large N.
By means of Holder’s inequality for integrals we get

J do_ M*< (f d(T |M*|N>1/N(J do_ )(N—l)/N
s P\ s IVHET se [VHI ’

< IVHI| |
the sign of equality being better approached wihéh is
everywhere positive. Hence, using E¢89), (71), and(72)

N! zE”VHH Mi (IVHI)

(73)

and assuming that a regular deformation faaltf) exists
[29] such that we can write

d(E) 6E do o\
<||VH||>(N'LE for M ) (o

R(E)
2NN

AB<HHBWW%

[Q,(B)"N=

we then obtain

N N N
2m®“£ﬁfm*%H
g

QO =
V(E) <||VH||>N+1

] (75)
where we have used ¥M]|N=(ky+ro+- - +1y)N=N! Ky
+R(E), with k4, ... ,xy the principal curvatures O‘EE, and
Kg is the Gauss-Kronecker curvature Bf, Kg= HI 1Ki-
R(E) is a remainder. Again we have used tf@H)| is only
very weakly varying at larg&l and that it is always positive.
According to the Chern-Lashof theordi26]
N

| doiiel =voIh ) s

s i=0

(76)

wheres)™* is an(N- 1)-dimensional hypersphere of unit ra-
dius andu;(Zg) are the Morse indexes &fz which are de-
fined exactly as those of thd,’s seen in the previous sec-
tions, i.e., as the number of critical points of index on a
given level se=HYE); a critical point is a point where
VH=0, the index of a critical point is the number of nega-
tive eigenvalues of the Hessian ldfcomputed at the critical
point.

Finally the entropy per degree of freedom reads as

N

S(E) = —|09 QB = —|Og [VOl(éN H2 wilZe)

i=0
a2
M SR PIVE RV
The meaning of Eq(77) is better understood if we consider
that the Morse indexeg;(M) of a differentiable manifoldM

are related to the Betti numbelogM) of the same manifold
by the inequalities

2NdEMN(E)™
(IVHIDN

(77)

ri(M) = bi(M). (78)

The Betti numbers are fundamentalpological invariants
[18] of differentiable manifolds; they are the

spaces(the de Rham’s cohomology spagethus they are
integer numbers. The equality sign holds only for the so-
called perfect Morse functions, which are rare, however, at
large dimension we can safely replace Ef8) with w;(M)
=b;(M) (see, e.g., Ref7]).
Equation(77), rewritten as
R(E)
7NN
(79

SE) = —Iog[vol(%N 1)2 () +f

L1 2MdEMEE!
(IVHPN

N
links topological properties of theicroscopicphase space
with the macroscopidhermodynamic potentie(E).

In particular, even though the functioR(E) is unknown,
sudden changes of the topology of the hypersurfagelse-
flected by the energy variation af;(2¢)] necessarily affect
the energy variation of the entropy.

Finally, we resort to the fact that—at larfe—the volume
measure oB.g concentrates oﬁz\'zél,zx M, whereSz\'zgl/z
={(py, ... ,p0)[EP?=(2K)} is the kinetic energy hypersphere
and My, ={(qy, ... ,an) V() <(V)}, so thatZ¢ can be ap-
proximated by this product manifold, and we resort to the

Kunneth formula[18] for the Betti numbers of a product
manifold AX B, i.e.,

bi(A X B) = X, bj(A)b(B)

J+k=i

(80)

which, applied toSj, 12X My, gives bi(2g)=2(M,) for

=1,... N-1, andb;(2g)=b;(M,) for j=0,N, since all the
Betti numbers of an hypersphere vanish bgiandby which
are equal to 118]. Eventually we obtain

N-1
Sv) = —Iog {vol(sN 1)[b0+ > 2b(M,) + bN]

i=1

2Nd(E)]M(eE)"

+R[E®)] AVHDYE

N (81)
where R[E(v)] stands for the integral on the product mani-
fold of the remainder which appears in E§9). The equa-
tion earlier makes explicit the fact that the kinetic energy
term of a standard Hamiltonian is topologically trivial.

From this equation we see that a fundamental topological
quantity, the sum of the Betti numbers of the submanifolds
M, ={(dy, ...,an) € RNV(g)<v} of configuration space, is
related, although with some approximation, to the thermody-
namic entropy of the system.

While a relationship between topology and thermodynam-
ics exists, as is shown by both E¢81) and(77), an analytic
formula linking the Euler characteristic to thermodynamics
has not been found yet and is unlikely to exist. Therefore, in
those cases allowing the analytic computation of the Morse
indexes(as for the models tackled in this pajpdresides the
computation of the Euler characteristic through the formula
(39), we can use the Morse indexes to replace the Hoyn
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o7k T ' ' ' T ' ] spectively. For this model, a clear and sharp relation between
l e 7 1 the presence of a phase transition and a particular topology
0.6 - e / i change in the submanifolds of tiNedimensional configura-

I 7 / 1 tion space is analytically worked out: this correspondence
0.5 s J/ . becomes one-to-one if we look at the submanifolds of a re-
- ol S 1 duced two-dimensional configuration space spanned by col-

S 04 /./' 7 7 lective variables. Moreover, not only the presence and the
/ ol 1 location in energy of the transition can be inferred by looking

0.3 i / ol ] at the behavior of topological quantities: also the order of the
ook 7 /7 — k=1 i transition is related to the behavior of a topological invariant
s — k=2 ; of the earlier mentioned submanifolds, their Euler character-
0.1H/" -~ k=3 . istic. This suggests that topological quantities are linked in
L/ 1 general to thermodynamic observables. Such a general link,

0g 0'5 : 1'0 : 1'5 : S0 although based on some approximations, has been derived in

v/A the final section of the paper.

The results presented here confirm the validity and the
FIG. 11. Logarithm of the sum of the Morse indexes divided by Potential of the topological approach to phase transitions,
N, u=(1/N)log [uo+25N711i(M,)+uy] of the manifoldsM, vs which has recently received a rigorous background via the

the energy density, scaled withA, for k=1,2,3. proof of a theoren[8] Stating that, for systems with short-
ranged interactions, topology changes in the submanifolds of

N-1 : - N-1 configuration space are @ecessarycondition for a phase
iy Zb‘(M”)+bN] in Eq. .(81) with [.’u°+2‘=1 214(M,) transition to take place. The model we studied here is not
+#nl, having resorted again to the estimafeM) = 1(M). short ranged, thus the theorem might probably be extended

Then we can plot this sum, that we shall denoteubygainst !

the potential energy density for the three different cases con:—0 a more general class of systems. However, we would like
sidered-k=1,2,3. Theresult is shown in Fig. 11, where 0 mention the case of a mean-field model, the fully coupled

: X . . 4 model, which has been recently studi@¥], and where
sharp differences are evident between the three situafions: (f]e relation between the topologyychangges]in the submani-
k=1, absence of any phase transition, in which case the p

i f . th:(ii) k=2 d-ord h ¢ olds of the configuration space and the phase transition is
s?trigno I"; \\:\lshli)C;’ls ;ngothé“patt_err; ;?(\:/va -dc?;ptlearlyps Zssh;%n' less straightforward. Further work is then needed to assess
nondifferentiable change at the phase transition pdiiit; the full potential and the limits of the topological approach to

X S : hase transitions.
k=3, flrst-qrde_r phase transition, |n_wh|ch case the pattern of Concerning in particular first-order phase transitions, it
m vsv again displays a sharp nondifferentiable change at ths\l

”» . E . Would be very interesting to test the topological approach of
phase transition point which is approached from the left Wlththe present paper in models with more realistic interactions,

an opposite concavity with respect to thg s_econd-order.trar]_—e_' described by potentials with a hard-core repulsion, short
sition case. Likewise the Euler characteristic, the quantity ranged, and in two or three space dimensions. In other

E{iénm(;r;iefg%%e Eﬂ:resﬁggffg;%Vﬁ';?at%pgiogénChgir;gﬁﬁ ords, it would be interesting to find the topological coun-
v K 9 9 y terpart of the phenomena of freezing and condensation. On

releggglvtv;]t: (_t:]heirgr]gleEZIr;tli% igg&%f EB1) and the par- general grounds, and in particular on the basis of the theorem
ticular analytic result obtained for tHhefM and reported in |nXRee;EE3],totop;§Iogyra|en ;Ir; IS:) ?sssgf Sthse'[e;)raisegérﬁyggg:—els
Fig. 11 are of great relevance in view of a deeper understand- P play Y 1 &0

. 4 . -~ Inverse power potentials: as in this case the theorem in Ref.
'ng of the relationship between_ f[opology changes Qf conﬂgu 8] applies, the submanifolddl,’s and3,,’'s must undergo a
ration space anq phase transitions: further work Is ongain ontrivial and energy-depending topology change at the first-
along this direction.

As a final comment, let us remark that the clearcut dii‘fer—Order transition point. However, how this topology change is

N mond the three different in Fio. 11 are detects aped remains unknown and deserves investigation. On the
ences among the three difterent cases 9. 11 are deteclgf, o hand, finding all the critical points of a short-ranged

prior to andindependently ofhe definition of any statistical otential energy function, in two or three dimensions, seems

e e Yoy Ao ot PESETL vy i k. m bothanalyicaland umer
in the microscopic interaction potential itself and conceale al points of view. The sﬂuapon IS not better in the case Of.
in its way of shaping configuration space submanifolds _ard spher_es systems,_that N -Of entropy driven _phase transi-

" tions. In this case, thésingula) interaction potential cannot

play any longer the role of Morse function, what does not
IV. CONCLUDING REMARKS mean that the connect.ion petween topology and phgse tran-

sitions is lost, but that in this case other Morse functions are

We have presented a mean-field model whose thermodyte be used to probe and characterize topolégypossible

namics is exactly solvable in both the canonical and the michoice could be the sum of all the pairwise euclidean dis-
crocanonical ensemble: the model depends on a paraketetances between the hard spheres of a system: it is real valued,

and exhibits no transitions, a continuous phase transition anid has a minimum when the density is maximum, that is for
a discountinuous one, in the cadesl, k=2, andk=3, re-  close packing; the discussion of nondegeneracy is more in-
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volved and here would be out of plac&he spatial density advance in both the analytical and numerical methodologies.
of spheres should replace energy in the role of control pa-
rameter. This is still a completely open field of investigation. ACKNOWLEDGMENT

In conclusion, applying the topological approach to “real”  One of us(L.C.) thanks M. Kastner for useful comments
first-order transitions will probably need a substantialand suggestions.
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